Increasing the Skill of Probabilistic Forecasts: Understanding Performance Improvements from Model-Error Representations

Author:

Berner J.1,Fossell K. R.1,Ha S.-Y.1,Hacker J. P.1,Snyder C.1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract Four model-error schemes for probabilistic forecasts over the contiguous United States with the WRF-ARW mesoscale ensemble system are evaluated in regard to performance. Including a model-error representation leads to significant increases in forecast skill near the surface as measured by the Brier score. Combining multiple model-error schemes results in the best-performing ensemble systems, indicating that current model error is still too complex to be represented by a single scheme alone. To understand the reasons for the improved performance, it is examined whether model-error representations increase skill merely by increasing the reliability and reducing the bias—which could also be achieved by postprocessing—or if they have additional benefits. Removing the bias results overall in the largest skill improvement. Forecasts with model-error schemes continue to have better skill than without, indicating that their benefit goes beyond bias reduction. Decomposing the Brier score into its components reveals that, in addition to the spread-sensitive reliability, the resolution component is significantly improved. This indicates that the benefits of including a model-error representation go beyond increasing reliability. This is further substantiated when all forecasts are calibrated to have similar spread. The calibrated ensembles with model-error schemes consistently outperform the calibrated control ensemble. Including a model-error representation remains beneficial even if the ensemble systems are calibrated and/or debiased. This suggests that the merits of model-error representations go beyond increasing spread and removing the mean error and can account for certain aspects of structural model uncertainty.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3