Evaluation of Polar WRF from Modeling the Atmospheric Boundary Layer over Antarctic Sea Ice in Autumn and Winter

Author:

Tastula Esa-Matti1,Vihma Timo2,Andreas Edgar L3

Affiliation:

1. University of Helsinki, Helsinki, Finland

2. Finnish Meteorological Institute, Helsinki, Finland

3. NorthWest Research Associates, Lebanon, New Hampshire

Abstract

Abstract Regional simulations of the atmospheric boundary layer over Antarctic sea ice that have been adequately validated are rare. To address this gap, the authors use the doubly nested Polar Weather Research and Forecasting (Polar WRF) mesoscale model to simulate conditions during Ice Station Weddell (ISW) in the austral autumn and winter of 1992. The WRF simulations test two boundary layer schemes: Mellor–Yamada–Janjic and the Asymmetric Convective Model. Validation is against surface-layer and sounding observations from ISW. Simulated latent and sensible heat fluxes for both boundary layer schemes had poor correlation with the observed fluxes. Simulated surface temperature had better correlation with the observations, with a typical bias of 0–2 K and a root-mean-square error of 6–7 K. For surface temperature and wind speed, the Polar WRF yielded better results than the ECMWF Re-Analysis Interim (ERA-Interim). A more challenging test of the simulations is to reproduce features of the low-level jet and the temperature inversion, which were observed, respectively, in 80% and 96% of the ISW radiosoundings. Both boundary layer schemes produce only about half as many jets as were observed. Moreover, the simulated jet coincided with an observed jet only about 30% of the time. The number of temperature inversions and the height at the inversion base were better reproduced, although this was not the case with the depth of the inversion layer. Simulations of the temperature inversion improved when forecasts of cloud fraction agreed to within 0.3 with observations. The modeled inversions were strongest when the incoming longwave radiation was smallest, but this relationship was not observed at ISW.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3