Impact of the selected boundary layer schemes and enhanced horizontal resolution on the Weather Research and Forecasting model performance on James Ross Island, Antarctic Peninsula

Author:

Matějka Michael,Láska Kamil

Abstract

The output of the various Weather Research and Forecasting (WRF) model configurations was compared with ground-based observations in the northern part of James Ross Island, Antarctic Peninsula. In this region, a network of automatic weather stations deployed at ice-free sites (as well as small glaciers) is operated by the Czech Antarctic Research Programme. Data from these stations provide a unique opportunity to evaluate the WRF model in a complex terrain of James Ross Island. The model was forced by the ERA5 reanalysis data and the University of Bremen sea ice data. The model configurations include a novel Three-Dimensional Scale-Adaptive Turbulent Kinetic Energy (3D TKE) planetary boundary layer scheme and a more traditional Quasi-Normal Scale Elimination (QNSE) scheme. Impact of model horizontal resolution was evaluated by running simulations in both 700 m and 300 m. The validation period, 25 May 2019 to 12 June 2019, was selected to cover different stratification regimes of air temperature and a significant snowfall event. Air temperature was simulated well except for strong low-level inversions. These inversions occurred in 44% of all cases and contributed to a higher mean bias (2.0–2.9°C) at low-elevation sites than at high altitude sites (0.2–0.6°C). The selection of the 3D TKE scheme led to improvement at low-elevation sites; at high altitude sites, the differences between model configurations were rather small. The best performance in wind speed simulation was achieved with the combination of the 3D TKE scheme and 300 m model resolution. The most important improvement was decrease of bias at a coastal Mendel Station from 3.5 m·s‑1 with the QNSE scheme on the 700 m grid to 1.2 m·s‑1 with the 3D TKE scheme on the 300 m grid. The WRF model was also proven to simulate a large snowfall event with a good correspondence with the observed snow height.

Publisher

Masaryk University Press

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3