The AntAWS dataset: a compilation of Antarctic automatic weather station observations
-
Published:2023-01-24
Issue:1
Volume:15
Page:411-429
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Wang YetangORCID, Zhang Xueying, Ning Wentao, Lazzara Matthew A., Ding Minghu, Reijmer Carleen H.ORCID, Smeets Paul C. J. P., Grigioni Paolo, Heil PetraORCID, Thomas Elizabeth R.ORCID, Mikolajczyk David, Welhouse Lee J., Keller Linda M., Zhai Zhaosheng, Sun Yuqi, Hou ShuguiORCID
Abstract
Abstract. A new meteorological dataset derived from records of Antarctic automatic weather stations (here called the AntAWS dataset) at 3 h, daily and monthly resolutions including quality control information is presented here. This dataset integrates the measurements of air temperature, air pressure, relative humidity, and wind speed and direction from 267 Antarctic AWSs obtained from 1980 to 2021. The AWS spatial distribution remains heterogeneous, with the majority of instruments located in near-coastal areas and only a few inland on the East Antarctic Plateau. Among these 267 AWSs, 63 have been operating for more than 20 years and 27 of them in excess of more than 30 years. Of the five meteorological parameters, the measurements of air temperature have the best continuity and the highest data integrity. The overarching aim of this comprehensive compilation of AWS observations is to make these data easily and widely accessible for efficient use in local, regional and continental studies; it may be accessed at https://doi.org/10.48567/key7-ch19 (Wang et al., 2022). This dataset is invaluable for improved characterization of the surface climatology across the Antarctic continent, to improve our understanding of Antarctic surface snow–atmosphere interactions including precipitation events associated with atmospheric rivers and to evaluate regional climate models or meteorological reanalysis products.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference61 articles.
1. Allison, I.: The surface climate of the interior of the Lambert Glacier basin: 5 years of automatic weather station data, Ann. Glaciol., 27, 515–520, https://https://doi.org/10.3189/1998AoG27-1-515-520, 1998. 2. Allison, I. and Morrissy, J. V.: Automatic weather stations in Antarctica, Aust. Meteorol. Mag., 31, 71–76, 1983. 3. Allison, I., Wendler, G., and Radok, U.: Climatology of the East Antarctic ice sheet (100∘ E to 140∘ E) derived from automatic weather stations, J. Geophys. Res.-Atmos., 98, 8815–8823, https://doi.org/10.1029/93JD00104, 1993. 4. Amory, C.: Drifting-snow statistics from multiple-year autonomous measurements in Adélie Land, East Antarctica, The Cryosphere, 14, 1713–1725, https://doi.org/10.5194/tc-14-1713-2020, 2020. 5. Aristidi, E., Agabi, K., Azouit, M., Azouit, M., Fossat, E., Vernin, J., Travouillon, T., Lawrence, J. S., Meyer, C., Storey, J. W. V., Halter, B., Roth W. L., and Walden, V.: An analysis of temperatures and wind speeds above Dome C, Antarctica, Astron. Astrophys., 430, 739–746, https://doi.org/10.1051/0004-6361:20041876, 2005.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|