Object-Based Evaluation of a Storm-Scale Ensemble during the 2009 NOAA Hazardous Weather Testbed Spring Experiment

Author:

Johnson Aaron1,Wang Xuguang1

Affiliation:

1. School of Meteorology, University of Oklahoma, and Center for Analysis and Prediction of Storms, Norman, Oklahoma

Abstract

Abstract Object-based verification of deterministic forecasts from a convection-allowing ensemble for the 2009 NOAA Hazardous Weather Testbed Spring Experiment is conducted. The average of object attributes is compared between forecasts and observations and between forecasts from subensembles with different model dynamics. Forecast accuracy for the full ensemble and the subensembles with different model dynamics is also evaluated using two object-based measures: the object-based threat score (OTS) and the median of maximum interest (MMI). Forecast objects aggregated from the full ensemble are generally more numerous, have a smaller average area, more circular average aspect ratio, and more eastward average centroid location than observed objects after the 1-h lead time. At the 1-h lead time, forecast objects are less numerous than observed objects. Members using the Advanced Research Weather Research and Forecasting Model (ARW) have fewer objects, more linear average aspect ratio, and smaller average area than members using the Nonhydrostatic Mesoscale Model (NMM). The OTS aggregated from the full ensemble is more consistent with the diurnal cycles of the traditional equitable threat score (ETS) than the MMI because the OTS places more weight on large objects, while the MMI weights all objects equally. The group of ARW members has higher OTS than the group of NMM members except at the 1-h lead time when the group of NMM members has more accurate maintenance and evolution of initially present precipitation systems provided by radar data assimilation. The differences between the ARW and NMM accuracy are more pronounced with the OTS than the MMI and the ETS.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3