Precipitation Nowcasting Based on Deep Learning over Guizhou, China

Author:

Kong Dexuan12ORCID,Zhi Xiefei1,Ji Yan1,Yang Chunyan2,Wang Yuhong3,Tian Yuntao1,Li Gang4,Zeng Xiaotuan5

Affiliation:

1. Key Laboratory of Meteorology Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Meteorological Bureau of Qian Xinan Buyei and Miao Autonomous Prefecture, Xingyi 562400, China

3. Hebei Meteorological Observatory, Shijiazhuang 050021, China

4. Guizhou Meteorological Observatory, Guiyang 550002, China

5. Guangxi Meteorological Observatory, Nanning 530022, China

Abstract

Accurate precipitation nowcasting (lead time: 0–2 h), which requires high spatiotemporal resolution data, is of great relevance in many weather-dependent social and operational activities. In this study, we are aiming to construct highly accurate deep learning (DL) models to directly obtain precipitation nowcasting at 6-min intervals for the lead time of 0–2 h. The Convolutional Long Short-Term Memory (ConvLSTM) and Predictive Recurrent Neural Network (PredRNN) models were used as comparative DL models, and the Lucas–Kanade (LK) Optical Flow method was selected as a traditional extrapolation baseline. The models were trained with high-quality datasets (resolution: 1 min) created from precipitation observations recorded by automatic weather stations in Guizhou Province (China). A comprehensive evaluation of the precipitation nowcasting was performed, which included consideration of the root mean square error, equitable threat score (ETS), and probability of detection (POD). The evaluation indicated that the reduction of the number of missing values and data normalization boosted training efficiency and improved the forecasting skill of the DL models. Increasing the time series length of the training set and the number of training samples both improved the POD and ETS of the DL models and enhanced nowcasting stability with time. Training with the Hea-P dataset further improved the forecasting skill of the DL models and sharply increased the ETS for thresholds of 2.5, 8, and 15 mm, especially for the 1-h lead time. The PredRNN model trained with the Hea-P dataset (time series length: 8 years) outperformed the traditional LK Optical Flow method for all thresholds (0.1, 1, 2.5, 8, and 15 mm) and obtained the best performance of all the models considered in this study in terms of ETS. Moreover, the Method for Object-Based Diagnostic Evaluation on a rainstorm case revealed that the PredRNN model, trained well with high-quality observation data, could both capture complex nonlinear characteristics of precipitation more accurately than achievable using the LK Optical Flow method and establish a reasonable mapping network during drastic changes in precipitation. Thus, its results more closely matched the observations, and its forecasting skill for thresholds exceeding 8 mm was improved substantially.

Funder

Natural Science Foundation of Hebei Province

Meteorological Science, Technology Open Research Fund of Guizhou Meteorological Bureau

Provincial and Municipal Joint Fund Project of Guizhou Province Meteorological Bureau

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CNN vs. LSTM: A Comparative Study of Hourly Precipitation Intensity Prediction as a Key Factor in Flood Forecasting Frameworks;Atmosphere;2024-09-06

2. Deployment of 3D-Conv-LSTM for Precipitation Nowcast via Satellite Data;2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN);2024-05-03

3. A Comprehensive Review on Utilization of Deep Learning for Precipitation Nowcasting via Satellite Data;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2023-11-10

4. Calibrations of Ten-Meter Wind Speed Prediction over the Yunnan-Kweichow Plateau Based on the U-Net Neural Network;2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE);2023-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3