Exploring the Watch-to-Warning Space: Experimental Outlook Performance during the 2019 Spring Forecasting Experiment in NOAA’s Hazardous Weather Testbed

Author:

Gallo Burkely T.12ORCID,Wilson Katie A.13,Choate Jessica4,Knopfmeier Kent13,Skinner Patrick13,Roberts Brett123,Heinselman Pamela35,Jirak Israel2,Clark Adam J.35

Affiliation:

1. a Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

2. b NOAA/NWS/NCEP Storm Prediction Center, Norman, Oklahoma

3. c NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

4. d Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

5. e School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract During the 2019 Spring Forecasting Experiment in NOAA’s Hazardous Weather Testbed, two NWS forecasters issued experimental probabilistic forecasts of hail, tornadoes, and severe convective wind using NSSL’s Warn-on-Forecast System (WoFS). The aim was to explore forecast skill in the time frame between severe convective watches and severe convective warnings during the peak of the spring convective season. Hourly forecasts issued during 2100–0000 UTC, valid from 0100 to 0200 UTC demonstrate how forecasts change with decreasing lead time. Across all 13 cases in this study, the descriptive outlook statistics (e.g., mean outlook area, number of contours) change slightly and the measures of outlook skill (e.g., fractions skill score, reliability) improve incrementally with decreasing lead time. WoFS updraft helicity (UH) probabilities also improve slightly and less consistently with decreasing lead time, though both the WoFS and the forecasters generated skillful forecasts throughout. Larger skill differences with lead time emerge on a case-by-case basis, illustrating cases where forecasters consistently improved upon WoFS guidance, cases where the guidance and the forecasters recognized small-scale features as lead time decreased, and cases where the forecasters issued small areas of high probabilities using guidance and observations. While forecasts generally “honed in” on the reports with slightly smaller contours and higher probabilities, increased confidence could include higher certainty that severe weather would not occur (e.g., lower probabilities). Long-range (1–5 h) WoFS UH probabilities were skillful, and where the guidance erred, forecasters could adjust for those errors and increase their forecasts’ skill as lead time decreased. Significance Statement Forecasts are often assumed to improve as an event approaches and uncertainties resolve. This work examines the evolution of experimental forecasts valid over one hour with decreasing lead time issued using the Warn-on-Forecast System (WoFS). Because of its rapidly updating ensemble data assimilation, WoFS can help forecasters understand how thunderstorm hazards may evolve in the next 0–6 h. We found slight improvements in forecast and WoFS performance as a function of lead time over the full experiment; the first forecasts issued and the initial WoFS guidance performed well at long lead times, and good performance continued as the event approached. However, individual cases varied and forecasters frequently combined raw model output with observed mesoscale features to provide skillful small-scale forecasts.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3