Testing Stochastic and Perturbed Parameter Methods in an Experimental 1-km Warn-on-Forecast System Using NSSL’s Phased-Array Radar Observations

Author:

Stratman Derek R.12,Yussouf Nusrat123,Kerr Christopher A.12,Matilla Brian C.12,Lawson John R.4,Wang Yaping5

Affiliation:

1. a Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

2. b NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

3. c School of Meteorology, University of Oklahoma, Norman, Oklahoma

4. d Bingham Research Center, Utah State University, Vernal, Utah

5. e SAIC at NOAA/NWS/NCEP/EMC, College Park, Maryland

Abstract

Abstract The success of the National Severe Storms Laboratory’s (NSSL) experimental Warn-on-Forecast System (WoFS) to provide useful probabilistic guidance of severe and hazardous weather is mostly due to the frequent assimilation of observations, especially radar observations. Phased-array radar (PAR) technology, which is a potential candidate to replace the current U.S. operational radar network, would allow for even more rapid assimilation of radar observations by providing full-volumetric scans of the atmosphere every ∼1 min. Based on previous studies, more frequent PAR data assimilation can lead to improved forecasts, but it can also lead to ensemble underdispersion and suboptimal observation assimilation. The use of stochastic and perturbed parameter methods to increase ensemble spread is a potential solution to this problem. In this study, four stochastic and perturbed parameter methods are assessed using a 1-km-scale version of the WoFS and include the stochastic kinetic energy backscatter (SKEB) scheme, the physically based stochastic perturbation (PSP) scheme, a fixed perturbed parameters (FPP) method, and a novel surface-model scheme blending (SMSB) method. Using NSSL PAR observations from the 9 May 2016 tornado outbreak, experiments are conducted to assess the impact of the methods individually, in different combinations, and with different cycling intervals. The results from these experiments reveal the potential benefits of stochastic and perturbed parameter methods for future versions of the WoFS. Stochastic and perturbed parameter methods can lead to more skillful forecasts during periods of storm development. Moreover, a combination of multiple methods can result in more skillful forecasts than using a single method. Significance Statement Phased-array radar technology allows for more frequent assimilation of radar observations into ensemble forecast systems like the experimental Warn-on-Forecast System. However, more frequent radar data assimilation can eventually cause issues for prediction systems due to the lack of ensemble spread. Thus, the purpose of this study is to explore the use of four stochastic and perturbed parameter methods in a next-generation Warn-on-Forecast System to generate ensemble spread and help prevent the issues from frequent radar data assimilation. Results from this study indicate the stochastic and perturbed parameter methods can improve forecasts of storms, especially during storm development.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference90 articles.

1. A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses;Aksoy, A.,2009

2. Spatially and temporally varying adaptive covariance inflation for ensemble filters;Anderson, J. L.,2009

3. A North American hourly assimilation and model forecast cycle: The Rapid Refresh;Benjamin, S. G.,2016

4. A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system;Berner, J.,2009

5. Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations;Berner, J.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3