Skill Assessment of NCEP Three-Way Coupled HWRF–HYCOM–WW3 Modeling System: Hurricane Laura Case Study

Author:

Kim Hyun-Sook12,Meixner Jessica3,Thomas Biju13,G. Reichl Brandon4,Liu Bin13,Mehra Avichal3,Wallcraft Alan5

Affiliation:

1. a IMSG at NOAA/NCEP/EMC, College Park, Maryland

2. b NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

3. c NOAA/Environmental Modeling Center, College Park, Maryland

4. d NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

5. e Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida

Abstract

Abstract In this research, we develop a three-way coupled prediction system to advance the realization of air–sea interaction processes. This study considers the sea-state-dependent momentum flux and nonlinear interactions between waves, winds, and ocean currents using the U.S. National Centers for Environmental Prediction’s operational Hurricane Weather Research and Forecasting (HWRF)-Hybrid Coordinate Ocean Model (HYCOM) coupled modeling system. Wave feedback is performed through the air–sea interaction module (ASIM) added to WAVEWATCH III (WW3), which employs the wave boundary layer to parameterize unresolved high-frequency tail spectra by using the mean flux profile constructed from the conservation of total momentum and wave energy. The atmospheric momentum flux is updated using the sea-state-dependent Charnock coefficient, wave-induced stress, and ocean surface currents before being passed to HYCOM. Wave coupling in HYCOM includes Coriolis–Stokes forcing to simulate wave–current interactions and to enhance mixing to account for Langmuir turbulence. The fully coupled system is tested for Hurricane Laura (2020). This paper examines the forecast skills of the individual component models by comparing simulations with observations. Without skill degradation of HYCOM and WW3, the three-way coupling method improves the track and intensity forecast skills by 5% each over those of HWRF-HYCOM coupling, and 27% and 17% over those of uncoupling, respectively. Importantly, this fully coupled system outperforms rapid intensification by reducing the intensification magnitude and matching the occurrence and duration. Overall, the forecast performance evaluated in the study establishes a baseline for the next-generation hurricane prediction system. Significance Statement This study is the documentation of the numerical advancement of tropical cyclone (TC) forecasting and the demonstration of the improvement of the TC intensity forecast. A key asset is the importance of wave coupling and inclusion of the nonlinear interactions in the air–sea interaction zone, and is to advance the current U.S. NCEP operational coupled hurricane modeling system. By assessing simulations for Hurricane Laura (2020), we demonstrate skill improvement of the storm structure, and intensity forecasts, especially for rapid intensification (RI) by correcting the timing and the magnitude of RI simulated by uncoupling and two-way coupling.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3