Affiliation:
1. NOAA/National Weather Service, Office of Hydrologic Development, Silver Spring, Maryland, and University Corporation for Atmospheric Research, Boulder, Colorado
2. Department of Civil Engineering, The University of Texas at Arlington, Arlington, Texas
3. NOAA/NWS/NCEP/Environmental Modeling Center, Camp Springs, Maryland
Abstract
Abstract
Precipitation forecasts from the Short-Range Ensemble Forecast (SREF) system of the National Centers for Environmental Prediction (NCEP) are verified for the period April 2006–August 2010. Verification is conducted for 10–20 hydrologic basins in each of the following: the middle Atlantic, the southern plains, the windward slopes of the Sierra Nevada, and the foothills of the Cascade Range in the Pacific Northwest. Mean areal precipitation is verified conditionally upon forecast lead time, amount of precipitation, season, forecast valid time, and accumulation period. The stationary block bootstrap is used to quantify the sampling uncertainties of the verification metrics. In general, the forecasts are more skillful for moderate precipitation amounts than either light or heavy precipitation. This originates from a threshold-dependent conditional bias in the ensemble mean forecast. Specifically, the forecasts overestimate low observed precipitation and underestimate high precipitation (a type-II conditional bias). Also, the forecast probabilities are generally overconfident (a type-I conditional bias), except for basins in the southern plains, where forecasts of moderate to high precipitation are reliable. Depending on location, different types of bias correction may be needed. Overall, the northwest basins show the greatest potential for statistical postprocessing, particularly during the cool season, when the type-I conditional bias and correlations are both high. The basins of the middle Atlantic and southern plains show less potential for statistical postprocessing, as the type-II conditional bias is larger and the correlations are weaker. In the Sierra Nevada, the greatest benefits of statistical postprocessing should be expected for light precipitation, specifically during the warm season, when the type-I conditional bias is large and the correlations are strong.
Publisher
American Meteorological Society
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献