Synthetic Forecast Ensembles for Evaluating Forecast Informed Reservoir Operations

Author:

Brodeur Zachary P.1ORCID,Delaney Chris2ORCID,Whitin Brett3ORCID,Steinschneider Scott1ORCID

Affiliation:

1. Department of Biological and Environmental Engineering Cornell University Ithaca NY USA

2. Center for Western Weather and Water Extremes (CW3E) Scripps Institute of Oceanography University of California‐San Diego La Jolla CA USA

3. NOAA/NWS California‐Nevada River Forecast Center (CNRFC) Sacramento CA USA

Abstract

AbstractForecast informed reservoir operations (FIRO) is an important advance in water management, but the design and testing of FIRO policies is limited by relatively short (10–35 year) hydro‐meteorological hindcasts. We present a novel, multisite model for synthetic forecast ensembles to overcome this limitation. This model utilizes parametric and non‐parametric procedures to capture complex forecast errors and maintain correlation between variables, lead times, locations, and ensemble members. After being fit to data from the hindcast period, this model can generate synthetic forecast ensembles in any period with observations. We demonstrate the approach in a case study of the FIRO‐based Ensemble Forecast Operations (EFO) control policy for the Lake Mendocino—Russian River basin, which conditions release decisions on ensemble forecasts from the Hydrologic Ensemble Forecast System (HEFS). We explore two generation strategies: (a) simulation of synthetic forecasts of meteorology to force HEFS; and (b) simulation of synthetic HEFS streamflow forecasts directly. We evaluate the synthetic forecasts using ensemble verification techniques and event‐based validation, finding good agreement with the actual ensemble forecasts. We then evaluate EFO policy performance using synthetic and actual forecasts over the hindcast period (1985–2010) and synthetic forecasts only over the pre‐hindcast period (1948–1984). Results show that the synthetic forecasts highlight important failure modes of the EFO policy under plausible forecast ensembles, but improvements are still needed to fully capture FIRO policy behavior under the actual forecast ensembles. Overall, the methodology advances a novel way to test FIRO policy robustness, which is key to building institutional support for FIRO.

Publisher

American Geophysical Union (AGU)

Reference69 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3