A Nonparametric Postprocessor for Bias Correction of Hydrometeorological and Hydrologic Ensemble Forecasts

Author:

Brown James D.1,Seo Dong-Jun1

Affiliation:

1. NOAA/National Weather Service, Office of Hydrologic Development, Silver Spring, Maryland, and University Corporation for Atmospheric Research, Boulder, Colorado

Abstract

Abstract This paper describes a technique for quantifying and removing biases from ensemble forecasts of hydrometeorological and hydrologic variables. The technique makes no a priori assumptions about the distributional form of the variables, which is often unknown or difficult to model parametrically. The aim is to estimate the conditional cumulative distribution function (ccdf) of the observed variable given a (possibly biased) real-time ensemble forecast. This ccdf represents the “true” probability distribution of the forecast variable, subject to sampling uncertainties. In the absence of a known distributional form, the ccdf should be estimated nonparametrically. It is noted that the probability of exceeding a threshold of the observed variable, such as flood stage, is equivalent to the expectation of an indicator variable defined for that threshold. The ccdf is then modeled through a linear combination of the indicator variables of the forecast ensemble members. The technique is based on Bayesian optimal linear estimation of indicator variables and is analogous to indicator cokriging (ICK) in geostatistics. By developing linear estimators for the conditional expectation of the observed variable at many thresholds, ICK provides a discrete approximation of the full ccdf. Since ICK minimizes the conditional error variance of the indicator variable at each threshold, it effectively minimizes the continuous ranked probability score (CRPS) when infinitely many thresholds are employed. The technique is used to bias-correct precipitation ensemble forecasts from the NCEP Global Ensemble Forecast System (GEFS) and streamflow ensemble forecasts from the National Weather Service (NWS) River Forecast Centers (RFCs). Split-sample validation results are presented for several attributes of ensemble forecast quality, including reliability and discrimination. In general, the forecast biases were substantially reduced following ICK. Overall, the technique shows significant potential for bias-correcting ensemble forecasts whose distributional form is unknown or nonparametric.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3