The Impact of Vertical Resolution on Fog Forecasting in the Kilometric-Scale Model AROME: A Case Study and Statistics

Author:

Philip A.1,Bergot T.1,Bouteloup Y.1,Bouyssel F.1

Affiliation:

1. CNRM UMR3589, Météo-France/CNRS, Toulouse, France

Abstract

Abstract The impact of vertical resolution on numerical fog forecasting is studied in detail for a specific case and evaluated statistically over a winter season. Three vertical resolutions are tested with the kilometric-scale Applications of Research to Operations at Mesoscale (AROME) numerical weather prediction model over Paris Charles de Gaulle Airport (Paris-CDG) in Paris, France. For the case studied, the vertical resolution has a strong impact on fog onset. The nocturnal jet and the turbulence created by wind shear at the top of the nocturnal boundary layer are more pronounced with a finer vertical resolution, and the turbulence close to the ground is also stronger with high vertical resolution. Local circulations created by the terrain induce different simulated processes during the fog onset. The fog is simulated as advection–radiation fog in the finer vertical resolution run and as radiation fog in the others. The vertical resolution has little impact on the mature and dissipation phases. A statistical study over a winter season confirms the results obtained in the fog case study. High vertical resolution simulates earlier onset, as well as longer-lasting and more spatially heterogeneous fogs. The high vertical resolution configuration simulates more fog events than are found at low resolution (LR); these fog events generally form north of Paris-CDG. No observations are available in this area, leading to many simulated but no observed fog events in the fine-resolution runs. The ceiling of low clouds is not well simulated by the numerical model no matter what vertical resolution is used.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3