Simulating the Effects of Regional Forest Cover and Windthrow‐Induced Cover Changes on Mid‐Latitude Boundary‐Layer Clouds

Author:

Noual G.12ORCID,Brunet Y.1ORCID,Le Moigne P.2ORCID,Lac C.2ORCID

Affiliation:

1. ISPA INRAE Villenave d’Ornon France

2. CNRM Université de Toulouse, Météo‐France, CNRS Toulouse France

Abstract

AbstractEvidence has been provided that land‐cover changes such as deforestation can have an impact on cloudiness and precipitation. However, conflicting results have been obtained at different scales and places, highlighting our poor understanding of the physical processes involved. Here we focus on mesoscale summer cloudiness in a temperate region, as influenced by a large forest massif (the Landes forest in France). Our study is based on an up‐to‐date atmosphere‐surface mesoscale model (Meso‐NH coupled with SURFEX). Based on observational data, we first optimize the model configuration for our purpose, and show that with a 500 m horizontal resolution we can successfully simulate the higher summer cloud cover observed over the forest, compared to its surroundings. Second, we investigate the physical processes leading to cloud formation in a representative case study. Based on a comparative analysis of diagnostics and budgets over forest and non‐forest areas, we find that the larger sensible heat flux over the forest and its higher roughness are the main drivers of cloudiness, enhancing vertical velocity and boundary‐layer mixing. Third, we simulate the impact of the 2009 Klaus storm that led to the loss of about one third of the trees. Considering 15 representative convective summer days, we show that the model simulates well the resulting decrease in summer cloudiness that was reported in a previous study based on satellite observations. As a complementary tool, the mesoscale simulations allow to quantify the impacts of the Klaus storm windthrow on the diurnal cycle of the boundary layer.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3