Converging Findings of Climate Models and Satellite Observations on the Positive Impact of European Forests on Cloud Cover

Author:

Caporaso Luca12ORCID,Duveiller Gregory3ORCID,Giuliani Graziano4ORCID,Giorgi Filippo4ORCID,Stengel Martin5ORCID,Massaro Emanuele1,Piccardo Matteo6ORCID,Cescatti Alessandro1ORCID

Affiliation:

1. European Commission Joint Research Centre Ispra Italy

2. National Research Council of Italy Institute of BioEconomy Rome Italy

3. Max Planck Institute for Biogeochemistry Jena Germany

4. Abdus Salam International Centre for Theoretical Physics Trieste Italy

5. Deutscher Wetterdienst Offenbach Germany

6. Collaborator of European Commission Joint Research Centre Ispra Italy

Abstract

AbstractAlthough afforestation is a potential strategy to mitigate climate change by sequestering carbon, its potential biophysical effects on climate, such as regulating surface albedo, evapotranspiration, and energy balance, have not been fully incorporated into climate change mitigation strategies. This is partly due to the challenges associated with modeling the complex bidirectional interactions between vegetation and climate. In this study, we assess the impact of afforestation on low cloud cover using a regional climate model (RCM) and Earth observation data, applying a space‐for‐time approach to overcome limitations that may arise from comparing satellite and RCM results, such as different background climate conditions or different extents of land cover change. Our results show a consistent increase in low cloud cover in Europe due to afforestation in both datasets (3.71% and 3.56% on average, respectively), but the magnitude and direction of this effect depend on various factors, including location, seasonality, and forest type. These results suggest that afforestation can have important feedbacks on the climate system, and that its biophysical effects must be considered in climate change mitigation strategies. Furthermore, we emphasize the role of the modeling community in developing accurate and reliable approaches to assess the biophysical effects of land cover change on climate.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3