Importance of CCN activation for fog forecasting and its representation in the two‐moment microphysical scheme LIMA

Author:

Vié B.1ORCID,Ducongé L.1ORCID,Lac C.1ORCID,Bergot T.1ORCID,Price J.2ORCID

Affiliation:

1. CNRM Université de Toulouse, Météo‐France, CNRS Toulouse France

2. Met Office Exeter UK

Abstract

AbstractThe work presented in this article studies the impact of cloud condensation nuclei (CCN) activation for fog forecasting and improves its parameterization in the LIMA (Liquid, Ice, Multiple Aerosols) two‐moment microphysical scheme, building upon the Local And Non‐local Fog EXperiment (LANFEX) field campaign observations, specifically the intensive observation period (IOP) 1 and the DEMISTIFY intercomparison. Large‐eddy simulations were performed with the Meso‐NH model, first using a prognostic supersaturation allowing us to compute the number of activated CCN at each time step, and then with the usual saturation adjustment hypothesis and a diagnostic maximum supersaturation. The prognostic supersaturation method provided very good results, similar to those from earlier simulations of this case using a bin scheme, and was thus used as a reference. In contrast, the diagnostic maximum supersaturation method strongly overestimated droplet numbers and produced a too‐thick fog. Thus, improvements to the maximum supersaturation diagnostic were proposed, by (1) revising the temperature tendency and (2) accounting for pre‐existing cloud droplets in the activation parameterization. These improvements resulted in a simulation in good agreement with observations and the reference simulation, and are promising for use in numerical weather prediction systems with a lower resolution and/or a longer time step.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3