Bayesian Model Averaging’s Problematic Treatment of Extreme Weather and a Paradigm Shift That Fixes It

Author:

Bishop Craig H.1,Shanley Kevin T.2

Affiliation:

1. Naval Research Laboratory, Monterey, California

2. Department of Mechanical Engineering, Clarkson University, Potsdam, New York

Abstract

Abstract Methods of ensemble postprocessing in which continuous probability density functions are constructed from ensemble forecasts by centering functions around each of the ensemble members have come to be called Bayesian model averaging (BMA) or “dressing” methods. Here idealized ensemble forecasting experiments are used to show that these methods are liable to produce systematically unreliable probability forecasts of climatologically extreme weather. It is argued that the failure of these methods is linked to an assumption that the distribution of truth given the forecast can be sampled by adding stochastic perturbations to state estimates, even when these state estimates have a realistic climate. It is shown that this assumption is incorrect, and it is argued that such dressing techniques better describe the likelihood distribution of historical ensemble-mean forecasts given the truth for certain values of the truth. This paradigm shift leads to an approach that incorporates prior climatological information into BMA ensemble postprocessing through Bayes’s theorem. This new approach is shown to cure BMA’s ill treatment of extreme weather by providing a posterior BMA distribution whose probabilistic forecasts are reliable for both extreme and nonextreme weather forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3