Bayesian Model Averaging with Temporal Correlation for Time Series Forecasts

Author:

Ono Kosuke1

Affiliation:

1. Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan, Numerical Prediction Development Center, Japan Meteorological Agency, Tsukuba, Japan

Abstract

AbstractThis study extends Bayesian model averaging (BMA) to a form suitable for time series forecasts. BMA is applied to a three-member ensemble for temperature forecasts with a 1-h interval time series at specific stations. The results of such an application typically have a problematic characteristic. BMA weights assigned to ensemble members fluctuate widely within a few hours because BMA optimizations are independent at each lead time, which is incompatible with the spatiotemporal continuity of meteorological phenomena. To ameliorate this issue, a degree of correlation among different lead times is introduced by the extension of latent variables to lead times adjacent to the target lead time for the calculation of BMA weights and variances. This extension approach stabilizes the BMA weights, improving the performance of deterministic and probabilistic forecasts. Also, an investigation of the effects of this extension technique on the shapes of forecasted probability density functions showed that the extension approach offers advantages in bimodal cases. This extension technique may show promise in other applications to improve the performance of forecasts by BMA.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3