Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts

Author:

Berrocal Veronica J.1,Raftery Adrian E.1,Gneiting Tilmann1

Affiliation:

1. Department of Statistics, University of Washington, Seattle, Washington

Abstract

Abstract Forecast ensembles typically show a spread–skill relationship, but they are also often underdispersive, and therefore uncalibrated. Bayesian model averaging (BMA) is a statistical postprocessing method for forecast ensembles that generates calibrated probabilistic forecast products for weather quantities at individual sites. This paper introduces the spatial BMA technique, which combines BMA and the geostatistical output perturbation (GOP) method, and extends BMA to generate calibrated probabilistic forecasts of whole weather fields simultaneously, rather than just weather events at individual locations. At any site individually, spatial BMA reduces to the original BMA technique. The spatial BMA method provides statistical ensembles of weather field forecasts that take the spatial structure of observed fields into account and honor the flow-dependent information contained in the dynamical ensemble. The members of the spatial BMA ensemble are obtained by dressing the weather field forecasts from the dynamical ensemble with simulated spatially correlated error fields, in proportions that correspond to the BMA weights for the member models in the dynamical ensemble. Statistical ensembles of any size can be generated at minimal computational cost. The spatial BMA technique was applied to 48-h forecasts of surface temperature over the Pacific Northwest in 2004, using the University of Washington mesoscale ensemble. The spatial BMA ensemble generally outperformed the BMA and GOP ensembles and showed much better verification results than the raw ensemble, both at individual sites, for weather field forecasts, and for forecasts of composite quantities, such as average temperature in National Weather Service forecast zones and minimum temperature along the Interstate 90 Mountains to Sound Greenway.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference51 articles.

1. A method for producing and evaluating probabilistic forecasts from ensemble model integrations.;Anderson;J. Climate,1996

2. Potential forecast skill of ensemble prediction and spread and skill distribution of the ECMWF ensemble prediction system.;Buizza;Mon. Wea. Rev.,1997

3. A limited memory algorithm for bound constrained optimization.;Byrd;SIAM J. Sci. Comput.,1995

4. Geostatistics: Modeling Spatial Uncertainty.;Chilès,1999

5. Statistics for Spatial Data.;Cressie,1993

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3