SAL—A Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts

Author:

Wernli Heini1,Paulat Marcus1,Hagen Martin2,Frei Christoph3

Affiliation:

1. Institute for Atmospheric Physics, University of Mainz, Mainz, Germany

2. Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen, Germany

3. Federal Office of Meteorology and Climatology (MeteoSwiss), Zürich, Switzerland

Abstract

Abstract A novel object-based quality measure, which contains three distinct components that consider aspects of the structure (S), amplitude (A), and location (L) of the precipitation field in a prespecified domain (e.g., a river catchment) is introduced for the verification of quantitative precipitation forecasts (QPF). This quality measure is referred to as SAL. The amplitude component A measures the relative deviation of the domain-averaged QPF from observations. Positive values of A indicate an overestimation of total precipitation; negative values indicate an underestimation. For the components S and L, coherent precipitation objects are separately identified in the forecast and observations; however, no matching is performed of the objects in the two datasets. The location component L combines information about the displacement of the predicted (compared to the observed) precipitation field’s center of mass and about the error in the weighted-average distance of the precipitation objects from the total field’s center of mass. The structure component S is constructed in such a way that positive values occur if precipitation objects are too large and/or too flat, and negative values if the objects are too small and/or too peaked. Perfect QPFs are characterized by zero values for all components of SAL. Examples with both synthetic precipitation fields and real data are shown to illustrate the concept and characteristics of SAL. SAL is applied to 4 yr of daily accumulated QPFs from a global and finer-scale regional model for a German river catchment, and the SAL diagram is introduced as a compact means of visualizing the results. SAL reveals meaningful information about the systematic differences in the performance of the two models. While the median of the S component is close to zero for the regional model, it is strongly positive for the coarser-scale global model. Consideration is given to the strengths and limitations of the novel quality measure and to possible future applications, in particular, for the verification of QPFs from convection-resolving weather prediction models on short time scales.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3