Analog European Heat Waves for U.S. Cities to Analyze Impacts on Heat-Related Mortality

Author:

Kalkstein Laurence S.,Greene J. Scott,Mills David M.,Perrin Alan D.,Samenow Jason P.,Cohen Jean-Claude

Abstract

Europe experienced an unprecedented excessive heat event (EHE) in 2003, raising the question: What if a similar EHE were experienced in U.S. cities? This study used an airmass-based meteorological method to develop analogs to the 2003 European EHE for five U.S. cities: Detroit, New York, Philadelphia, St. Louis, and Washington, D.C.; and calculated the potential excess mortality for these analogs. Analogs capture the 2003 EHEs characteristics by determining daily deviations from long-term averages for meteorological variables in Paris, France, expressed as a multiple of the standard deviation for each variable s long-term average. The 2003 daily multiples of the standard deviation measured in Paris for 12 meteorological variables, and daily maximum and minimum temperatures, were transferred to each U.S. city, and multiplied by the corresponding standard deviation calculated for each variable, to produce analog meteorological variables. With these data, an airmass calendar for each city was developed, and excess mortality was calculated using existing city-specific airmass algorithms. Results show the analog EHEs breaking all-time records for maximum and high minimum temperatures in all five cities. Excess heat-related mortality for the analog summer is 2 to over 7 times the long-term average, with New York showing the greatest increases. In all cities, calculated excess heat-related mortality for the analog summer exceeds the hottest recorded summer in 35 yr. These study results could be valuable for public health planning and a wide range of additional reliability or sensitivity analyses.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3