Affiliation:
1. School of Atmospheric Sciences Nanjing University Nanjing China
2. Frontiers Science Center for Critical Earth Material Cycling Nanjing University Nanjing China
3. Suzhou Meteorological Bureau of Jiangsu Province Suzhou China
4. Ocean College Zhejiang University Hangzhou China
5. Pacific Northwest National Laboratory Richland WA USA
Abstract
AbstractBoth urban land cover (ULC) change and anthropogenic heat (AH) emission are important causes of urban heat island, but their relative contributions to the changes in urban precipitation and the related mechanism remain unclear. Based on numerical simulations utilizing the latest realistic urban fraction and AH data over the Yangtze River Delta urban agglomeration, we found that ULC and AH resulted in nearly opposite effects on precipitation. Various dynamical and thermodynamic processes were involved according to the atmospheric moisture budget analyses. AH increased precipitation particularly during afternoon, and the increases were stronger during heavy precipitation events because of the enhanced moisture convergence effect together with the release of moisture storage previously accumulated in the atmosphere. Differently, ULC reduced mean precipitation mainly due to suppressed evaporation. During weak precipitation events, the suppressed evaporation was largely balanced by the intensified moisture convergence, but during heavy events, ULC caused more pronounced precipitation reduction because the moisture convergence response disappeared and failed to offset the evaporation effect. The relative contributions of different dynamical and thermodynamic processes such as those related to circulation, moisture gradient, and background moisture availability to the temporal variation in the total moisture convergence were further quantified. Overall, our results help better understand the relative roles of different aspects of urbanization on precipitation, and suggest that compared to ULC, reduction in AH emission that is tightly related to the energy consumption structure could be more efficient for mitigating the risk of extreme precipitation.
Funder
National Key Research and Development Program of China
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献