Modelling climate analogue regions for a central European city

Author:

Reuter LynnORCID,Graf AlexanderORCID,Goergen KlausORCID,Döscher NielsORCID,Leuchner MichaelORCID

Abstract

AbstractIn this study, we describe a methodology to derive climate analogue cities for spatially highly resolved future climate scenarios. For the computation, a reduced and in hindsight bias-adjusted EURO-CORDEX EUR-11 dataset is used based on two climate scenarios (RCP4.5 and RCP8.5). A total of 389 European cities are processed by the algorithm, which uses five statistical climate variables (2-m air temperature average and amplitude, precipitation sum and amplitude, correlation between 2-m air temperature average and precipitation sum). Additionally, extreme weather events (hot days, summer days, tropical nights, extreme precipitation events) are calculated for further comparison and validation. Finding an appropriate analogue permits a more accurate derivation and depiction of necessary climate adaptation efforts and therefore assist decision-making in city planning. As an example of our method, we searched for plausible climate twins for the mid-sized city of Aachen (Germany) at the end of the twenty-first century. Our results show that the French city of Dijon is highly likely to become Aachen’s climate twin by the end of the century for RCP4.5. As for the scenario RCP8.5, no clear European analogue city could be determined, indicating that the city might enter a novel climate. The nearest match suggests the cities of Florence and Prato in Tuscany. However, considering climate indices, the encompassing region of the French–Spanish city triangle Bordeaux–Toulouse–Bilbao is a better fit. The developed algorithm can be applied to any of the cities included in the dataset.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3