On a Simple Empirical Parameterization of Topography-Catalyzed Diapycnal Mixing in the Abyssal Ocean

Author:

Decloedt Thomas1,Luther Douglas S.1

Affiliation:

1. School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract The global spatial distribution of the turbulent diapycnal diffusivity in the abyssal ocean is reexamined in light of the growing body of microstructure data revealing bottom-intensified turbulent mixing in regions of rough topography. A direct and nontrivial implication of the observed intensification is that the diapycnal diffusivity Kρ, is depth dependent and patchily distributed horizontally across the world’s oceans. Theoretical and observational studies show that bottom-intensified mixing is dependent upon a variety of energy sources and processes whose contributions to mixing are sufficiently complex that their physical parameterization is premature; only rudimentary parameterizations of tidally induced mixing have been attempted, although the tides likely provide no more than half of the mechanical energy available for diapycnal mixing in the abyssal ocean. Here, an empirical (and still rudimentary) parameterization of the spatially variable mean diffusivity Kρ based on a large collection of microstructure data from several oceanic regions, is provided. The parameterization, called the roughness diffusivity model (RDM), depends only on seafloor roughness and height above bottom and has the advantage of tacitly including a broad range of mixing processes catalyzed by the roughness or acuteness of the bottom topography. The study focuses in particular on the vertical structure of Kρ and shows that exponential decay, prominent in current diapycnal mixing parameterizations, does not provide an adequate representation of the mean vertical profile. Instead, an inverse square law decay with a scale height and maximum near-boundary value depending on topographic roughness is shown to provide a more realistic vertical structure. Resulting basin-averaged diffusivities based on the RDM, which increase from ∼3 × 10−5 m2 s−1 at 1-km depth to ∼1.5 × 10−4 m2 s−1 at 4 km, are roughly consistent with spatial averages derived from hydrographic data inversions, supporting the contention that strong, localized mixing plays a major role in maintaining the observed abyssal stratification. The power required to sustain the stratification in the abyssal ocean (defined as 40°S–48°N, 1–4-km depth) is shown to be sensitive to the spatial distribution of the mixing. The power consumption in this domain, given the parameterized bottom-intensified and horizontally heterogeneous diffusivity structure in the RDM, is estimated as approximately 0.37 TW (TW = 1012 W), considerably less than the canonical value of ∼2 TW estimated under the assumption of a uniform diffusivity of ∼10−4 m2 s−1 in the abyssal ocean.

Publisher

American Meteorological Society

Subject

Oceanography

Reference104 articles.

1. Improved global maps and 54-year history of wind-work on ocean inertial motions.;Alford;Geophys. Res. Lett.,2003

2. Internal tide radiation from Mendocino Escarpment.;Althaus;J. Phys. Oceanogr.,2003

3. Some evidence for boundary mixing in the deep ocean.;Armi;J. Geophys. Res.,1978

4. Boundary mixing associated with tidal and near-inertial internal waves.;Aucan;J. Phys. Oceanogr.,2008

5. Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii.;Aucan;J. Phys. Oceanogr.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3