Tidal Mixing Events on the Deep Flanks of Kaena Ridge, Hawaii

Author:

Aucan Jerome1,Merrifield Mark A.1,Luther Douglas S.1,Flament Pierre1

Affiliation:

1. Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract A 3-month mooring deployment (August–November 2002) was made in 2425-m depth, on the south flank of Kaena Ridge, Hawaii, to examine tidal variations within 200 m of the steeply sloping bottom. Horizontal currents and vertical displacements, inferred from temperature fluctuations, are dominated by the semidiurnal internal tide with amplitudes of ≥ 0.1 m s−1 and ∼100 m, respectively. A series of temperature sensors detected tidally driven overturns with vertical scales of ∼100 m. A Thorpe scale analysis of the overturns yields a time-averaged dissipation near the bottom of 1.2 × 10−8 W kg−1, 10–100 times that at similar depths in the ocean interior 50 km from the ridge. Dissipation events much larger than the overall mean (up to 10−6 W kg−1) occur predominantly during two phases of the semidiurnal tide: 1) at peak downslope flows when the tidal stratification is minimum (N = 5 × 10−4 s−1) and 2) at the flow reversal from downslope to upslope flow when the tidal stratification is ordinarily increasing (N = 10−3 s−1). Dissipation associated with flow reversal mixing is 2 times that of downslope flow mixing. Although the overturn events occur at these tidal phases and they exhibit a general spring–neap modulation, they are not as regular as the tidal currents. Shear instabilities, particularly due to tidal strain enhancements, appear to trigger downslope flow mixing. Convective instabilities are proposed as the cause for flow reversal mixing, owing to the oblique propagation of the internal tide down the slope. The generation of similar tidally driven mixing features on continental slopes has been attributed to oblique wave propagation in previous studies. Because the mechanical energy source for mixing is primarily due to the internal tide rather than the surface tide, the observed intermittency of overturn events is attributed to the broadbanded nature of the internal tide.

Publisher

American Meteorological Society

Subject

Oceanography

Reference43 articles.

1. Some evidence for boundary mixing in the deep ocean.;Armi;J. Geophys. Res.,1978

2. Reply to comments by C. Garrett.;Armi;J. Geophys. Res.,1979

3. Budeus, G., and W.Schneider, 1998: In-situ temperature calibration: A remark on instruments and methods. International WOCE Newsletter, No. 30, International Project Office, Southampton, United Kingdom, 16–18.

4. Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion.;Carter;J. Phys. Oceanogr.,2006

5. Vertical overturns: A comparison of Thorpe and Ozmidov length scales.;Dillon;J. Geophys. Res.,1982

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3