Impact of Increased Horizontal Resolution of an Ocean Model on Carbon Circulation in the North Pacific Ocean

Author:

Tsujino H.12ORCID,Nakano H.1,Sakamoto K.13ORCID,Urakawa L. S.1ORCID,Toyama K.1ORCID,Kosugi N.1ORCID,Kitamura Y.1,Ishii M.1ORCID,Nishikawa S.4,Nishikawa H.4,Sugiyama T.4ORCID,Ishikawa Y.4

Affiliation:

1. JMA Meteorological Research Institute Tsukuba Japan

2. Japan Meteorological Business Support Center Tokyo Japan

3. Japan Meteorological Agency Tokyo Japan

4. Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) Yokohama Japan

Abstract

AbstractThe impact of resolving western boundary currents and mesoscale eddies on a carbon circulation simulation for the North Pacific Ocean is investigated to evaluate the merits of using high‐resolution ocean biogeochemical models for climate projections. Simulations by a 100‐km resolution global ocean biogeochemical model with and without embedding a 10‐km resolution model in the North Pacific Ocean are compared. The major improvement in the high‐resolution simulation is the representation of the Kuroshio, its extension current, and the recirculation gyres formed to its south and north, resulting in a proper representation of the North Pacific subtropical mode water (STMW) and an increase in storage of the anthropogenic CO2 (Canth) in STMW by about two‐thirds. The larger storage rate in STMW is caused by supply of a larger amount of warm surface water containing rich Canth to the formation region by the intensified Kuroshio. A huge buoyancy loss from this warm water results in the increased formation of STMW that occupies a vast area in the western subtropical gyre. The surface uptake of Canth in the formation region of STMW is slightly increased but is largely comparable to that of the low‐resolution model. Moreover, there is no structural difference in Canth uptake in other parts of the subtropical region. Thus, the improvement of Canth distribution can be understood as a redistribution of water mass in the subtropical gyre by the improved circulation. The present assessment motivates the use of a high horizontal resolution ocean model in next‐generation projection experiments with carbon cycles.

Funder

Ministry of Environment

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Agency

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3