On the Relationship between Inertial Instability, Poleward Momentum Surges, and Jet Intensifications near Midlatitude Cyclones

Author:

Rowe Shellie M.1,Hitchman Matthew H.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract This study explores the role of inertial instability in poleward momentum surges and “flare ups” of the subpolar jet near midlatitude cyclones. Two cases are simulated with the University of Wisconsin Nonhydrostatic Modeling System to investigate the mechanisms involved in jet accelerations downstream of quasi-stationary “digging troughs.” Deep convection along the cold front leads to regions of inertial instability in the upper troposphere, which are intimately linked to jet accelerations. Terms in the zonal and meridional wind equations following the motion are evaluated for a selected air parcel within the inertially unstable region. A two-stage synoptic evolution is diagnosed, which is a characteristic signature of inertial instability. First, meridional flow accelerates following the motion, because of the subgeostrophic zonal flow and strong northward pressure gradient force (a statement of inertial instability). Second, supergeostrophic poleward flow leads to zonal acceleration and a jet flare-up. Inertial instability thus effectively displaces a westerly jet maximum poleward relative to inertially stable conditions. The structure of the poleward surge involves a distinctive “head” of high angular momentum, with the region of inertial instability enclosing the jet maximum and a core of strongly negative potential vorticity inside the surge. Departures from angular momentum–conserving profiles during meridional displacement are interpreted in terms of the pressure gradient force and degree of inertial stability. Inertial instability reduces the resulting zonal wind profile relative to angular momentum conservation but provides a significant poleward displacement of the resulting zonal wind maximum.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3