Multiscale Aspects of the 26–27 April 2011 Tornado Outbreak. Part II: Environmental Modifications and Upscale Feedbacks Arising from Latent Processes

Author:

Abstract

Abstract One of the most prolific tornado outbreaks ever documented occurred on 26–27 April 2011 and comprised three successive episodes of tornadic convection that culminated with the development of numerous long-track, violent tornadoes over the southeastern United States during the afternoon of 27 April. This notorious afternoon supercell outbreak was preceded by two quasi-linear convective systems (hereinafter QLCS1 and QLCS2), the first of which was an anomalously severe nocturnal system that rapidly grew upscale during the previous evening. Here in Part II, we use a series of RUC 1-h forecasts and output from convection-permitting WRF-ARW simulations configured both with and without latent heat release to investigate how environmental modifications and upscale feedbacks produced by the two QLCSs contributed to the evolution and exceptional severity of this multiepisode outbreak. QLCS1 was primarily responsible for amplifying the large-scale flow pattern, inducing two upper-level jet streaks, and promoting secondary surface cyclogenesis downstream from the primary baroclinic system. Upper-level divergence markedly increased after QLCS1 developed, which yielded strong isallobaric forcing that rapidly strengthened the low-level jet (LLJ) and vertical wind shear over the warm sector and contributed to the system’s upscale growth and no table severity. Moreover, QLCS2 modified the mesoscale environment prior to the supercell outbreak by promoting the downstream formation of a pronounced upper-level jet streak, altering the midlevel jet structure, and furthering the development of a highly ageostrophic LLJ over the Southeast. Collectively, the flow modifications produced by both QLCSs contributed to the notably favorable shear profiles present during the afternoon supercell outbreak. Significance Statement The tornado outbreak that impacted the United States on 26–27 April 2011 was part of an extended outbreak that produced 343 tornadoes and numerous fatalities. This paper is Part II of a study that describes the meteorological factors supporting such a prolific event. Herein we investigate the convectively forced environmental modifications that occurred during a 36-h period encompassing three successive convective episodes. The first two episodes collectively altered the upper-level flow pattern and markedly enhanced low-level winds throughout the warm sector. These modifications served as upscale feedbacks that contributed to the first episode’s exceptional severity and to the remarkable vertical shear profiles that supported numerous long-track and violent tornadoes during the final episode on the afternoon of 27 April.

Funder

NOAA Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3