On the Role of the Meridional Jet and Horizontal Potential Vorticity Dipole in the Iowa Derecho of 10 August 2020

Author:

Hitchman Matthew H.1,Rowe Shellie M.1

Affiliation:

1. a Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract On 10 August 2020, a derecho caused widespread damage across Iowa and Illinois. Des Moines station data show that the arrival of the gust front was characterized by an abrupt shift to northerly flow, exceeding 22 m s−1 for ∼20 min. To test the hypothesis that this northerly jet is associated with a horizontal potential vorticity (PV) dipole in the lower troposphere, we investigated the structure of PV in the University of Wisconsin Nonhydrostatic Modeling System (UWNMS) and of absolute vorticity in High-Resolution Rapid Refresh (HRRR) forecast analyses. This structure is described here for the first time. The negative PV member coincides with the downdraft, while the positive PV member coincides with the updraft, with a northerly jet between. The westerly inflow jet descends anticyclonically in the downdraft, joining with northerly flow from the surface anticyclone. The resulting northerly outflow jet creates the trailing comma-shaped radar echo. The speed of propagation of the derecho is similar to the westerly wind maximum in the 3–5-km layer associated with the approaching synoptic cyclone, which acts as a steering level for resonant amplification. Idealized diagrams and 3D isosurfaces illustrate the commonality of the PV dipole/northerly jet structure. Differences in this structure among the three model states are related to low-level wind shear theory. The PV dipole coincides with the pattern of diabatic stretching tendency, which shifts westward and downward relative to the updraft/downdraft with increasing tilt. The PV dipole can contribute toward dynamical stability in a derecho. Significance Statement The purpose of this work is to investigate the structure of potential vorticity (PV) in the lower troposphere in a derecho. It is found that a northerly outflow jet occurs between an east–west-oriented horizontal PV dipole, which is described here for the first time. The negative PV member coincides with the downdraft and is inertially unstable, while the positive PV member coincides with the updraft. This work contributes toward the theory of resonant structures and longevity. The 3–5-km westerly inflow layer constitutes a steering level, which controls propagation speed despite differences in structure. The degree of westward tilt with height is related to the pattern of forcing by diabatic stretching in producing the PV dipole.

Funder

National Science Foundation

Publisher

American Meteorological Society

Reference72 articles.

1. Impact of convectively generated low-frequency gravity waves on evolution of mesoscale convective systems;Adams-Selin, R. D.,2020

2. Examination of gravity waves associated with the 13 March 2003 bow echo;Adams-Selin, R. D.,2013

3. Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

4. Bow echo mesovortices. Part I: Processes that influence their damaging potential;Atkins, N. T.,2009

5. Gravity waves, compensating subsidence and detrainment around cumulus clouds;Bretherton, C. S.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3