Lifting of Ambient Air by Density Currents in Sheared Environments

Author:

Davies-Jones Robert1,Markowski Paul2

Affiliation:

1. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

2. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract Two aspects of vorticity associated with cold pools are addressed. First, tilting of horizontal vortex tubes by the updraft at a gust front has been proposed as a means of getting near-ground rotation and hence a tornado. Theory and a numerical simulation are used to show that this mechanism will not work because warm air parcels approaching the gust front decelerate in strong adverse pressure gradient. The near-surface horizontal vorticity available for upward tilting is greatly reduced by horizontal compression before it is tilted. Consequently, uplifting of vortex tubes produces little vertical vorticity near the ground. Second, it is shown that the baroclinic vorticity generated at the leading edge of the cold pool is transported rearward in the vortex sheet along the interface between cold and warm air, and the barotropic vorticity associated with environmental shear is conserved along streamlines. Warm parcels away from the interface do not acquire baroclinic vorticity to offset their barotropic vorticity, as assumed in a theory for long-lived squall lines. The vortex sheet has a far-field effect on the circulation in the warm air. A steady-state vortex method is used to propose why there is a steady noncirculating density current only when a lid is present and at a specific height.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

1. A numerical simulation of cyclic mesocyclogenesis;Adlerman;J. Atmos. Sci.,1999

2. Computational design of the basic dynamical processes of the UCLA general circulation model;Arakawa;Methods Comput. Phys.,1977

3. Gravity currents and related phenomena;Benjamin;J. Fluid Mech.,1968

4. A benchmark simulation for moist nonhydrostatic numerical models;Bryan;Mon. Wea. Rev.,2002

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3