How Well Must Surface Vorticity Be Organized for Tornadogenesis?

Author:

Parker Matthew D.1

Affiliation:

1. a North Carolina State University, Raleigh, North Carolina

Abstract

Abstract This study investigates whether quasi-random surface vertical vorticity is sufficient for tornadogenesis when combined with an updraft typical of tornadic supercells. The viability of this pathway could mean that a coherent process to produce well-organized surface vertical vorticity is rather unimportant. Highly idealized simulations are used to establish random noise as a possible seed for the production of tornado-like vortices (TLVs). A number of sensitivities are then examined across the simulations. The most explanatory predictor of whether a TLV will form (and how strong it will become) is the maximal value of initial surface circulation found near the updraft. Perhaps surprisingly, sufficient circulation for tornadogenesis is often present even when the surface vertical vorticity field lacks any obvious organized structure. The other key ingredient for TLV formation is confirmed to be a large vertical gradient in vertical velocity close to the ground (to promote stretching). Overall, it appears that random surface vertical vorticity is indeed sufficient for TLV formation given adequate stretching. However, it is shown that longer-wavelength noise is more likely to be associated with substantial surface circulation (because it is the areal integral of vertical vorticity). Thus, coherent vorticity sources that produce longer-wavelength structures are likely to be the most supportive of tornadogenesis.

Funder

Directorate for Geosciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference85 articles.

1. Alexander, C. R., and J. M. Wurman, 2008: Updated mobile radar climatology of supercell tornado structures and dynamics. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 19.4, http://ams.confex.com/ams/pdfpapers/141821.pdf.

2. The role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones;Brooks, H. E.,1994

3. The influence of lifting condensation level on low-level outflow and rotation in simulated supercell thunderstorms;Brown, M.,2019

4. Spurious convective organization in simulated squall lines owing to moist absolutely unstable layers;Bryan, G. H.,2005

5. A benchmark simulation for moist nonhydrostatic numerical models;Bryan, G. H.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3