Large-Scale Errors and Mesoscale Predictability in Pacific Northwest Snowstorms

Author:

Durran Dale R.1,Reinecke Patrick A.2,Doyle James D.2

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. Naval Research Laboratory, Monterey, California

Abstract

Abstract The predictability of lowland snow in the Puget Sound region of the Pacific Northwest is explored by analyzing the spread in 100-member ensemble simulations for two events from December 2008. Sensitivities to the microphysical and boundary layer parameterizations in these simulations are minimized by estimating the likely precipitation type from the forecast 850-hPa temperatures and the established rain–snow climatology. Results suggest that the ensemble spread in events such as these, which were triggered by amplifying short waves, may develop a significant fraction of both rain-likely members and snow-likely members at forecast lead times as short as 36 h. The perturbation kinetic energy of the ensemble members about the ensemble mean () is not maximized at small scales. Instead, the power in the initial spectrum of produced by the authors’ ensemble Kalman filter (EnKF) data assimilation cycle increases with increasing horizontal scale. The power in subsequently grows with time, while maintaining approximately the same spectral shape. There is no evidence of small-scale perturbations developing rapidly and transferring their influence upscale. Instead, the large-scale perturbations appear to grow more rapidly during the first 12 h than those at the smallest resolved scales.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3