Three-Dimensional Characteristics of Stratospheric Mountain Waves during T-REX

Author:

Doyle James D.1,Jiang Qingfang2,Smith Ronald B.3,Grubišić Vanda4

Affiliation:

1. Naval Research Laboratory, Monterey, California

2. UCAR, Monterey, California

3. Yale University, New Haven, Connecticut

4. University of Vienna, Vienna, Austria

Abstract

Abstract Measurements from the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) Gulfstream V (G-V) obtained during the recent Terrain-Induced Rotor Experiment (T-REX) indicate marked differences in the character of the wave response between repeated flight tracks across the Sierra Nevada, which were separated by a distance of approximately 50 km. Observations from several of the G-V research flights indicate that the vertical velocities in the primary wave exhibited variations up to a factor of 2 between the southern and northern portions of the racetrack flight segments in the lower stratosphere, with the largest amplitude waves most often occurring over the southern flight leg, which has a terrain maximum that is 800 m lower than the northern leg. Multiple racetracks at 11.7- and 13.1-km altitudes indicate that these differences were repeatable, which is suggestive that the deviations were likely due to vertically propagating mountain waves that varied systematically in amplitude rather than associated with transients. The cross-mountain horizontal velocity perturbations are also a maximum above the southern portion of the Sierra Nevada ridge. Real data and idealized nonhydrostatic numerical model simulations are used to test the hypothesis that the observed variability in the wave amplitude and characteristics in the along-barrier direction is a consequence of blocking by the three-dimensional Sierra Nevada and the Coriolis effect. The numerical simulation results suggest that wave launching is sensitive to the overall three-dimensional characteristics of the Sierra Nevada barrier, which has an important impact on the wave amplitude and characteristics in the lower stratosphere. Real-time high-resolution Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) forecasts successfully capture the along-barrier variations in the wave amplitude (using vertical velocity as a proxy) as well as skillfully distinguishing between large- and small-amplitude stratospheric wave events during T-REX.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference45 articles.

1. Topographic Effects in Stratified Flows.;Baines,1995

2. The use of pressure fluctuations on the nose of an aircraft for measuring air motion.;Brown;J. Climate Appl. Meteor.,1983

3. Flow response to large-scale topography: The Greenland tip jet.;Doyle;Tellus,1999

4. Mountain waves over the Hohe Tauern.;Doyle;Quart. J. Roy. Meteor. Soc.,2003

5. Observations and numerical simulations of mountain waves in the presence of directional wind shear.;Doyle;Quart. J. Roy. Meteor. Soc.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3