Mechanism of MJO-Modulated Triggering on the Rainy Season Onset over the Indian Subcontinent

Author:

Xie Jinhui1,Hsu Pang-Chi1,Ray Pallav2,Li Kuiping3,Yu Weidong4

Affiliation:

1. a Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

2. b Meteorology, Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, Florida

3. c First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China

4. d School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai, China

Abstract

Abstract As rainfed agriculture remains India’s critical source of livelihood, improving our understanding of rainy season onset timing in the region is of great importance for a better prediction. Using a new gridded dataset of rainy season characteristics, we found a clear phase relationship between the Madden–Julian oscillation (MJO) and the onset timing of the rainy season over the Indian subcontinent. A significantly high probability of rainy season onset is observed when the MJO convection stays over the western-central Indian Ocean. On the other hand, the rainy season onset is infrequent when the MJO is over the Maritime Continent and western Pacific. The MJO-associated convective instability with anomalous warm and moist air in the lower troposphere appears and grows during the period 10 days prior to the onset of rainy season, and drops substantially after the start of rainy season, suggesting its role as a trigger of rainy season onset. In contrast, the low-frequency background state (LFBS) with a period > 90 days favors a convectively unstable stratification even after the onset of the rainy season, supporting the succeeding precipitation during the entire rainy season. Based on the scale-decomposed moisture budget diagnosis, we further found that the key processes inducing the abrupt transition from a dry to a wet condition come mainly from two processes: 1) convergence of LFBS moisture by MJO-related circulation perturbations and 2) advection of MJO moisture anomalies by the background cross-equatorial flow toward the Indian subcontinent. The results may help provide a better and longer lead-time prediction of the rainy season onset over the Indian subcontinent.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3