Effects of Intraseasonal Oscillation on Timing and Subseasonal Predictability of Mei-yu Onset over the Yangtze River Basin

Author:

Wei Sizhuo1,Hsu Pang-Chi1ORCID,Xie Jinhui1

Affiliation:

1. a Key Laboratory of Meteorological Disaster of Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

Abstract

Abstract The time of rainy season onset is crucial information for policymakers, especially in densely populated regions such as the Yangtze River basin (YRB) in China. In this study, we proposed a new grid-based index to objectively detect mei-yu onset timing using reanalysis data and model predictions, and then we identified the key processes via which intraseasonal oscillation (ISO) affects the YRB mei-yu onset and its subseasonal predictability based on scale-decomposed moisture analysis. Climatologically, propagation of an ISO anticyclonic anomaly toward East China supports the moisture convergence required for rainy season onset over the YRB via interaction with the seasonal-mean moisture component. In the years of early mei-yu onset, the ISO was enhanced earlier in May and favored the moisture convergence anomaly in late May–early June, when the mei-yu started. In contrast, the enhanced ISO and associated moistening processes were observed later in June–early July in the years with delayed onset. The European Centre for Medium-Range Weather Forecasts and National Centers for Environmental Prediction models show skillful prediction of mei-yu onset at forecast lead times of 5–6 pentads, whereas the China Meteorological Administration model has limited skill of 3 pentads. The differences in model prediction skill are related to the accuracy of predicted moisture convergence anomalies induced by the ISO. The prediction bias in mei-yu onset timing (early or delayed) is also connected to bias in the occurrence timing of enhanced intraseasonal perturbations, suggesting the vital role of ISO in YRB mei-yu onset on the subseasonal time scale.

Funder

Aeronautical Science Foundation of China

Publisher

American Meteorological Society

Reference69 articles.

1. A global gridded dataset of the characteristics of the rainy and dry seasons;Bombardi, R. J.,2019

2. Assessing objective techniques for gauge-based analyses of global daily precipitation;Chen, M.,2008

3. China Meteorological Administration, 2017: Meiyu Monitoring Indices, GB/T 33671—2017 (in Chinese). General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 10 pp.

4. Global precipitation hindcast quality assessment of the subseasonal to seasonal (S2S) prediction project models;de Andrade, F. M.,2019

5. Factors controlling the interannual variations of MJO intensity;Deng, L.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3