Microphysics Impacts on the Warm Conveyor Belt and Ridge Building of the NAWDEX IOP6 Cyclone

Author:

Abstract

AbstractThis study investigates diabatic processes along the warm conveyor belt (WCB) of a deep extratropical cyclone observed in the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). The aim is to investigate the effect of two different microphysics schemes, the one-moment scheme ICE3 and the quasi two-moment scheme LIMA, on the WCB and the ridge building downstream. ICE3 and LIMA also differ in the processes of vapor deposition on hydrometeors in cold and mixed-phase clouds. Latent heating in ICE3 is found to be dominated by deposition on ice while the heating in LIMA is distributed among depositions on ice, snow, and graupel. ICE3 is the scheme leading to the largest number of WCB trajectories (30% more than LIMA) due to greater heating rates over larger areas. The consequence is that the size of the upper-level ridge grows more rapidly in ICE3 than LIMA, albeit with some exceptions in localized regions of the cyclonic branch of the WCB. A comparison with various observations (airborne remote sensing measurements, dropsondes, and satellite data) is then performed. Below the melting layer, the observed reflectivity is rather well reproduced by the model. Above the melting layer, in the middle of the troposphere, the reflectivity and retrieved ice water content are largely underestimated by both schemes while at upper levels, the ICE3 scheme performs much better than LIMA in agreement with a closer representation of the observed winds by ICE3. These results underline the strong sensitivity of upper-level dynamics to ice-related processes.

Funder

agence nationale de la recherche

european space agency

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3