An Empirical Parameterization of Heterogeneous Ice Nucleation for Multiple Chemical Species of Aerosol

Author:

Phillips Vaughan T. J.1,DeMott Paul J.2,Andronache Constantin3

Affiliation:

1. Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

2. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

3. Boston College, Chestnut Hill, Massachusetts

Abstract

Abstract A novel, flexible framework is proposed for parameterizing the heterogeneous nucleation of ice within clouds. It has empirically derived dependencies on the chemistry and surface area of multiple species of ice nucleus (IN) aerosols. Effects from variability in mean size, spectral width, and mass loading of aerosols are represented via their influences on surface area. The parameterization is intended for application in large-scale atmospheric and cloud models that can predict 1) the supersaturation of water vapor, which requires a representation of vertical velocity on the cloud scale, and 2) concentrations of a variety of insoluble aerosol species. Observational data constraining the parameterization are principally from coincident field studies of IN activity and insoluble aerosol in the troposphere. The continuous flow diffusion chamber (CFDC) was deployed. Aerosol species are grouped by the parameterization into three basic types: dust and metallic compounds, inorganic black carbon, and insoluble organic aerosols. Further field observations inform the partitioning of measured IN concentrations among these basic groups of aerosol. The scarcity of heterogeneous nucleation, observed at humidities well below water saturation for warm subzero temperatures, is represented. Conventional and inside-out contact nucleation by IN is treated with a constant shift of their freezing temperatures. The empirical parameterization is described and compared with available field and laboratory observations and other schemes. Alternative schemes differ by up to five orders of magnitude in their freezing fractions (−30°C). New knowledge from future observational advances may be easily assimilated into the scheme’s framework. The essence of this versatile framework is the use of data concerning atmospheric IN sampled directly from the troposphere.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 312 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3