Interaction of microphysics and dynamics in a warm conveyor belt simulated with the ICOsahedral Nonhydrostatic (ICON) model

Author:

Oertel AnnikaORCID,Miltenberger Annette K.ORCID,Grams Christian M.ORCID,Hoose CorinnaORCID

Abstract

Abstract. Warm conveyor belts (WCBs) produce a major fraction of precipitation in extratropical cyclones and modulate the large-scale extratropical circulation. Diabatic processes, in particular associated with cloud formation, influence the cross-isentropic ascent of WCBs into the upper troposphere and additionally modify the potential vorticity (PV) distribution, which influences the larger-scale flow. In this study we investigate heating and PV rates from all diabatic processes, including microphysics, turbulence, convection, and radiation, in a case study that occurred during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) campaign using the Icosahedral Nonhydrostatic (ICON) modeling framework. In particular, we consider all individual microphysical process rates that are implemented in ICON's two-moment microphysics scheme, which sheds light on (i) which microphysical processes dominate the diabatic heating and PV structure in the WCB and (ii) which microphysical processes are the most active during the ascent and influence cloud formation and characteristics, providing a basis for detailed sensitivity experiments. For this purpose, diabatic heating and PV rates are integrated for the first time along online trajectories across nested grids with different horizontal resolutions. The convection-permitting simulation setup also takes the reduced aerosol concentrations over the North Atlantic into account. Our results confirm that microphysical processes are the dominant diabatic heating source during ascent. Near the cloud top longwave radiation cools WCB air parcels. Radiative heating and corresponding PV modification in the upper troposphere are non-negligible due to the longevity of the WCB cloud band. In the WCB ascent region, the process rates from turbulent heating and microphysics partially counteract each other. From all microphysical processes condensational growth of cloud droplets and vapor deposition on frozen hydrometeors most strongly influence diabatic heating and PV, while below-cloud evaporation strongly cools WCB air parcels prior to their ascent and increases their PV value. PV production is the strongest near the surface with substantial contributions from condensation, melting, evaporation, and vapor deposition. In the upper troposphere, PV is reduced by diabatic heating from vapor deposition, condensation, and radiation. Activation of cloud droplets as well as homogeneous and heterogeneous freezing processes have a negligible diabatic heating contribution, but their detailed representation is important for, e.g., hydrometeor size distributions. Generally, faster-ascending WCB trajectories are heated markedly more than more slowly ascending WCB trajectories, which is linked to larger initial specific humidity content providing a thermodynamic constraint on total microphysical heating. Yet, the total diabatic heating contribution of convectively ascending trajectories is relatively small due to their small fraction in this case study. Our detailed case study documents the effect of different microphysical processes implemented in ICON's two-moment scheme for heating and PV rates in a WCB from a joint Eulerian and Lagrangian perspective. It emphasizes the predominant role of microphysical processes and provides a framework for future experiments on cloud microphysical sensitivities in WCBs.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz-Gemeinschaft

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3