An Analysis of Tropical Cyclone Vortex and Convective Characteristics in Relation to Storm Intensity Using a Novel Airborne Doppler Radar Database

Author:

Fischer Michael S.12,Reasor Paul D.2,Rogers Robert F.2,Gamache John F.2

Affiliation:

1. a Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

2. b NOAA/AOML/Hurricane Research Division, Miami, Florida

Abstract

Abstract This analysis introduces a novel airborne Doppler radar database, referred to as the Tropical Cyclone Radar Archive of Doppler Analyses with Re-centering (TC-RADAR). TC-RADAR comprises over 900 analyses from 273 flights into TCs in the North Atlantic, eastern North Pacific, and central North Pacific basins between 1997 and 2020. This database contains abundant sampling across a wide range of TC intensities, which facilitated a comprehensive observational analysis on how the three-dimensional, kinematic TC inner-core structure is related to TC intensity. To examine the storm-relative TC structure, we implemented a novel TC center-finding algorithm. Here, we show that TCs below hurricane intensity tend to have monopolar radial profiles of vorticity and a wide range of vortex tilt magnitudes. As TC intensity increases, vorticity becomes maximized within an annulus inward of the peak wind, the vortex decays more slowly with height, and the vortex tends to be more aligned in the vertical. The TC secondary circulation is also strongly linked to TC intensity, as more intense storms have shallower and stronger lower-tropospheric inflow as well as larger azimuthally averaged ascent. The distribution of vertical velocity is found to vary with TC intensity, height, and radial domain. These results—and the capabilities of TC-RADAR—motivate multiple avenues for future work, which are discussed. Significance Statement Acquiring observations of the inner core of tropical cyclones (TCs) is a challenge due to the hazardous conditions inherent to the storm. A proven method of sampling the TC core region is the use of airborne radar. This study presents a novel database comprising over 900 airborne radar analyses collected in storms between 1997 and 2020, which is freely available to the research community. Here we demonstrate the utility of the database by examining how the three-dimensional structure of the TC core region changes depending upon the intensity of the storm. By identifying how the baseline TC vortex structure varies with TC intensity, this work provides the foundation for multiple future research avenues and model evaluation efforts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3