Relating the Skill of Tropical Cyclone Intensity Forecasts to the Synoptic Environment

Author:

Bhatia Kieran T.1,Nolan David S.1

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

Abstract Prior knowledge of the performance of a tropical cyclone intensity forecast holds the potential to increase the value of forecasts for end users. The values of certain dynamical parameters, such as storm speed, latitude, current intensity, potential intensity, wind shear magnitude, and direction of the shear vector, are shown to be related to the error of an individual model forecast. The varying success of each model in the different environmental conditions represents a source of additional information on the reliability of an individual forecast beyond average forecast error. Three hurricane intensity models that were operational for the duration of the five hurricane seasons between 2006 and 2010, as well as the National Hurricane Center official forecast (OFCL), are evaluated for 24-, 48-, and 72-h forecasts in the Atlantic Ocean. The performance of each model is assessed by computing the mean absolute error, bias, and percent skill relative to a benchmark model. The synoptic variables are binned into physically meaningful ranges and then tested individually and in combinations to capture the different regimes that are conducive to forecasts with higher or lower error. The results address conventional wisdom about which environmental conditions lead to better forecasts of hurricane intensity and highlight the different strengths of each model. The statistical significance established between the different bins in each model as well as the corresponding bins for other models indicates there is the potential for error predictions to accompany tropical cyclone intensity forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3