Diverging Behaviors of Simulated Tropical Cyclones in Moderate Vertical Wind Shear

Author:

Yu Chau-Lam1ORCID,Tang Brian1,Fovell Robert G.1

Affiliation:

1. a Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract As a follow-on to a previous study that examined the tilt and precession evolution of tropical cyclones (TCs) in a critical shear regime, this study examines the processes leading to the subsequent divergent evolutions in tilt and intensity. The control experiment fails to resume its precession and reintensify, while the perturbed experiments with enhanced upper-level inner-core vorticity resume the precession after a precession hiatus period. In the control experiment, a mesoscale negative absolute vorticity region forms at the upper levels due to tilting in strong downtilt convection. This upper-level, negative-vorticity region is inertially unstable, causing the inward acceleration of upper-level radial inflow. This upper-level inflow subsequently becomes negatively buoyant due to diabatic cooling and descends, bringing midlevel, low equivalent potential temperature (θE) air into the inner-core TC boundary layer, significantly disrupting the low-level TC circulation. Consequently, the disrupted TC vortex in the control is unable to recover. The upper-level negative vorticity region is absent in the perturbed experiments due to weaker downtilt convection, preventing the emergence of the disruptive inner-core downdraft. The weaker downtilt convection is caused by several factors. First, a stronger circulation aloft advects hydrometeors farther downwind, resulting in greater separation of the cooling-driven downdraft from the convective updraft region, and thus weaker dynamically forced lifting at low levels. Second, the mean θE of the low-level air feeding downtilt convection is smaller. Third, there is stronger and deeper adiabatic descent uptilt, causing more low-θE air diluting the downtilt updraft region. These results show how the full vortex structure is important to diverging TC evolutions in moderately sheared environments.

Funder

Office of Naval Research Global

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference80 articles.

1. Effects of surface fluxes on ventilation pathways and the intensification of Hurricane Michael (2018);Alland, J. J.,2022

2. Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part I: Downdraft ventilation;Alland, J. J.,2021a

3. Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part II: Radial ventilation;Alland, J. J.,2021b

4. How does Hurricane Edouard (2014) evolve toward symmetry before rapid intensification? A high-resolution ensemble study;Alvey, G. R., III,2020

5. Relating the skill of tropical cyclone intensity forecasts to the synoptic environment;Bhatia, K. T.,2013

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3