Affiliation:
1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
2. Department of Earth and Environment, Florida International University, Miami, Florida
Abstract
Abstract
Using a 15-yr (1998–2012) multiplatform dataset of passive microwave satellite data [tropical cyclone–passive microwave (TC-PMW)] for Atlantic and east Pacific storms, this study examines the relative importance of various precipitation properties, specifically convective intensity, symmetry, and area, to the spectrum of intensity changes observed in tropical cyclones. Analyses are presented not only spatially in shear-relative quadrants around the center, but also every 6 h during a 42-h period encompassing 18 h prior to onset of intensification to 24 h after. Compared to those with slower intensification rates, storms with higher intensification rates (including rapid intensification) have more symmetric distributions of precipitation prior to onset of intensification, as well as a greater overall areal coverage of precipitation. The rate of symmetrization prior to, and during, intensification increases with increasing intensity change as rapidly intensifying storms are more symmetric than slowly intensifying storms. While results also clearly show important contributions from strong convection, it is concluded that intensification is more closely related to the evolution of the areal, radial, and symmetric distribution of precipitation that is not necessarily intense.
Publisher
American Meteorological Society
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献