The Role of Surface Drag in Tornadogenesis within an Idealized Supercell Simulation

Author:

Roberts Brett1,Xue Ming1,Schenkman Alexander D.2,Dawson Daniel T.3

Affiliation:

1. Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

3. Purdue University, West Lafayette, Indiana

Abstract

Abstract To investigate the effect of surface drag on tornadogenesis, a pair of idealized simulations is conducted with 50-m horizontal grid spacing. In the first experiment (full-wind drag case), surface drag is applied to the full wind; in the second experiment (environmental drag case), drag is applied only to the background environmental wind, with storm-induced perturbations unaffected. The simulations are initialized using a thermal bubble within a horizontally homogeneous background environment that has reached a balance between the pressure gradient, Coriolis, and frictional forces. The environmental sounding is derived from a prior simulation of the 3 May 1999 Oklahoma tornado outbreak but modified to account for near-ground frictional effects. In the full-wind drag experiment, a tornado develops around 25 min into the simulation and persists for more than 10 min; in the environmental-only drag experiment, no tornado occurs. Three distinct mechanisms are identified by which surface drag influences tornadogenesis. The first mechanism is the creation by drag of near-ground vertical wind shear (and associated horizontal vorticity) in the background environment. The second mechanism is generation of near-ground crosswise horizontal vorticity by drag on the storm scale as air accelerates into the low-level mesocyclone; this vorticity is subsequently exchanged into the streamwise direction and eventually tilted into the vertical. The third mechanism is frictional enhancement of horizontal convergence, which strengthens the low-level updraft and stretching of vertical vorticity. The second and third mechanisms are found to work together to produce a tornado, while baroclinic vorticity plays a negligible role.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3