Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data

Author:

Heymsfield Andrew J.1,Protat Alain2,Bouniol Dominique2,Austin Richard T.3,Hogan Robin J.4,Delanoë Julien4,Okamoto Hajime5,Sato Kaori5,van Zadelhoff Gerd-Jan6,Donovan David P.6,Wang Zhien7

Affiliation:

1. National Center for Atmospheric Research,## Boulder, Colorado

2. +Centre d’Étude des Environnements Terrestre et Planétaires, Vélizy, France

3. #Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

4. @Department of Meteorology, Reading University, Reading, United Kingdom

5. &Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai, Japan

6. *Koninklijk Nederlands Meteorologisch Instituut, De Bilt, Netherlands

7. ++Department of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Abstract

Abstract Vertical profiles of ice water content (IWC) can now be derived globally from spaceborne cloud satellite radar (CloudSat) data. Integrating these data with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data may further increase accuracy. Evaluations of the accuracy of IWC retrieved from radar alone and together with other measurements are now essential. A forward model employing aircraft Lagrangian spiral descents through mid- and low-latitude ice clouds is used to estimate profiles of what a lidar and conventional and Doppler radar would sense. Radar reflectivity Ze and Doppler fall speed at multiple wavelengths and extinction in visible wavelengths were derived from particle size distributions and shape data, constrained by IWC that were measured directly in most instances. These data were provided to eight teams that together cover 10 retrieval methods. Almost 3400 vertically distributed points from 19 clouds were used. Approximate cloud optical depths ranged from below 1 to more than 50. The teams returned retrieval IWC profiles that were evaluated in seven different ways to identify the amount and sources of errors. The mean (median) ratio of the retrieved-to-measured IWC was 1.15 (1.03) ± 0.66 for all teams, 1.08 (1.00) ± 0.60 for those employing a lidar–radar approach, and 1.27 (1.12) ± 0.78 for the standard CloudSat radar–visible optical depth algorithm for Ze > −28 dBZe. The ratios for the groups employing the lidar–radar approach and the radar–visible optical depth algorithm may be lower by as much as 25% because of uncertainties in the extinction in small ice particles provided to the groups. Retrievals from future spaceborne radar using reflectivity–Doppler fall speeds show considerable promise. A lidar–radar approach, as applied to measurements from CALIPSO and CloudSat, is useful only in a narrow range of ice water paths (IWP) (40 < IWP < 100 g m−2). Because of the use of the Rayleigh approximation at high reflectivities in some of the algorithms and differences in the way nonspherical particles and Mie effects are considered, IWC retrievals in regions of radar reflectivity at 94 GHz exceeding about 5 dBZe are subject to uncertainties of ±50%.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3