Evaluating EAMv2 Simulated High Latitude Clouds Using ARM Measurements in the Northern and Southern Hemispheres

Author:

Zhang Meng1ORCID,Xie Shaocheng1ORCID,Liu Xiaohong2ORCID,Zhang Damao3ORCID,Lin Wuyin4,Zhang Kai3ORCID,Golaz Jean‐Christophe1ORCID,Zheng Xue1ORCID,Zhang Yuying1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory Livermore CA USA

2. Department of Atmospheric Sciences Texas A&M University College Station TX USA

3. Pacific Northwest National Laboratory Richland WA USA

4. Brookhaven National Laboratory Upton NY USA

Abstract

AbstractThis study evaluates high latitude stratiform mixed‐phase clouds (SMPC) in the atmosphere model of the Energy Exascale Earth System Model version 2 (EAMv2) by utilizing one‐year‐long ground‐based remote sensing measurements from the Atmospheric Radiation and Measurement (ARM) program. A nudging approach is applied to model simulations for a constrained comparison with the ARM observations. Observed and modeled SMPCs are sampled and collocated to address the difference in data resolution, so that we can consistently evaluate their macrophysical properties at the North Slope of Alaska (NSA) site in the Arctic and the McMurdo (AWR) site in the Antarctic. We found that EAMv2 overestimates SMPC frequency of occurrence at both sites. However, the model captures the observed larger cloud frequency of occurrence at the NSA site. For collocated SMPCs, the annual statistics of observed cloud macrophysics are generally reproduced at the NSA site, while at the AWR site, there are larger biases. Compared to the AWR site, the lower cloud top and cloud base and the warmer cloud top temperature observed at NSA are well simulated. On the other hand, simulated cloud phase is substantially biased. The model largely overestimates liquid water path, and the ice water path is underestimated at NSA, but at AWR, the liquid water path is frequently underestimated due to the dominance of snow in Antarctic SMPCs. As a result, the observed hemispheric difference in cloud phase partitioning is misrepresented in EAMv2. This study implies that additional model development is needed for high latitude mixed‐phase clouds.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3