Islet: Interpolation semi-Lagrangian element-based transport

Author:

Bradley Andrew M.,Bosler Peter A.,Guba OksanaORCID

Abstract

Abstract. Advection of trace species (tracers), also called tracer transport, in models of the atmosphere and other physical domains is an important and potentially computationally expensive part of a model's dynamical core (dycore). Semi-Lagrangian (SL) advection methods are efficient because they permit a time step much larger than the advective stability limit for explicit Eulerian methods. Thus, to reduce the computational expense of tracer transport, dycores often use SL methods to advect passive tracers. The class of interpolation semi-Lagrangian (ISL) methods contains potentially extremely efficient SL methods. We describe a set of ISL bases for element-based transport, such as for use with atmosphere models discretized using the spectral element (SE) method. An ISL method that uses the natural polynomial interpolant on Gauss-Legendre-Lobatto (GLL) SE nodes of degree at least three is unstable on the test problem of periodic translational flow on a uniform element grid. We derive new alternative bases of up to order of accuracy nine that are stable on this test problem; we call these the Islet bases. Then we describe an atmosphere tracer transport method, the Islet method, that uses three grids that share an element grid: a dynamics grid supporting, for example, the GLL basis of degree three; a physics grid with a configurable number of finite-volume subcells per element; and a tracer grid supporting use of our Islet bases, with particular basis again configurable. This method provides extremely accurate tracer transport and excellent diagnostic values in a number of validation problems. We conclude with performance results that use up to 27,600 NVIDIA V100 GPUs on the Summit supercomputer.

Funder

Advanced Scientific Computing Research

Biological and Environmental Research

Publisher

Copernicus GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3