Impact of the Madden–Julian Oscillation on Western North Pacific Tropical Cyclogenesis Associated with Large-Scale Patterns

Author:

Zhao Haikun1,Yoshida Ryuji2,Raga G. B.3

Affiliation:

1. Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

2. RIKEN Advanced Institute for Computational Science, Kobe, Japan

3. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico

Abstract

AbstractThe intraseasonal variability of tropical cyclogenesis in the western North Pacific (WNP) basin is explored in this study. The relation of cyclogenesis in each of the five large-scale patterns identified in recent work by Yoshida and Ishikawa is associated with the Madden–Julian oscillation (MJO). Confirming previous results, more events of cyclogenesis are found during the active MJO phase in the WNP. Furthermore, results indicate that most of the tropical cyclogenesis is associated with the monsoon shear line large-scale pattern during the active phase. The genesis potential index (GPI) and its individual components are used to evaluate the environmental factors that most contribute toward cyclogenesis under the different phases of the MJO. GPI exhibits a large positive anomaly during the active phase of the MJO, and such an anomaly is spatially correlated with the events of cyclogenesis. The analysis of each factor indicates that low-level relative vorticity and midlevel relative humidity are the two dominant contributors to the MJO-composited GPI anomalies. The positive GPI anomalies during the active phase are partially offset by the negative contributions from vertical wind shear and potential intensity. This is valid for all five large-scale patterns. It is noteworthy that the easterly wave (EW) large-scale pattern, while exhibiting the same influence of relative vorticity and midlevel humidity contributing toward positive GPI anomalies, presents slightly more cyclogenesis events under the inactive phase of the MJO. This unexpected result suggests that other factors not included in the definition of the GPI and/or changes in environmental flows on other time scales contribute to the tropical cyclogenesis associated with the EW large-scale pattern.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3