MJO and Tropical Cyclogenesis in the Gulf of Mexico and Eastern Pacific: Case Study and Idealized Numerical Modeling

Author:

Aiyyer Anantha1,Molinari John2

Affiliation:

1. Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

2. Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract The role of the Madden–Julian oscillation (MJO) in modulating the frequency and location of tropical cyclogenesis over the eastern Pacific and the Gulf of Mexico during August–September 1998 is examined. During the nonconvective phase of the MJO, convection and low-level cyclonic vorticity occurred primarily in conjunction with the intertropical convergence zone (ITCZ). During the convective phase, convection, low-level cyclonic vorticity, and convergence expanded into the northeastern Pacific and the Gulf of Mexico. This was accompanied by enhanced eddy kinetic energy and barotropic energy conversions as compared to the nonconvective phase, consistent with previous research. During the nonconvective phase of the MJO, vertical shear was relatively weaker but tropical cyclones tended to form mainly within the ITCZ. On the contrary, during the convective phase, vertical wind shear exceeded 10 m s−1 over much of this region and tropical cyclone development occurred north of the ITCZ, near the Mexican Pacific coast and the Gulf of Mexico. Idealized numerical experiments are conducted using a barotropic model with time-invariant basic states representative of the nonconvective and convective phases of the MJO. The simulations indicate that the propagation paths as well as the amplification of the eddies differ substantially between the two phases. During the nonconvective phase, the waves tend to propagate westward into the eastern Pacific. During the convective phase, stronger southerlies steer the waves into the Gulf of Mexico. The MJO-related modulation of tropical cyclogenesis in the eastern Pacific and Gulf of Mexico thus appears to involve anomalous convergence, cyclonic vorticity, vertical wind shear, and differing tracks of easterly waves.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3