The Canadian Land Data Assimilation System (CaLDAS): Description and Synthetic Evaluation Study

Author:

Carrera Marco L.1,Bélair Stéphane1,Bilodeau Bernard1

Affiliation:

1. Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Abstract

Abstract The Canadian Land Data Assimilation System (CaLDAS) has been developed at the Meteorological Research Division of Environment Canada (EC) to better represent the land surface initial states in environmental prediction and assimilation systems. CaLDAS is built around an external land surface modeling system and uses the ensemble Kalman filter (EnKF) methodology. A unique feature of CaLDAS is the use of improved precipitation forcing through the assimilation of precipitation observations. An ensemble of precipitation analyses is generated by combining numerical weather prediction (NWP) model precipitation forecasts with precipitation observations. Spatial phasing errors to the NWP first-guess precipitation forecasts are more effective than perturbations to the precipitation observations in decreasing (increasing) the exceedance ratio (uncertainty ratio) scores and generating flatter, more reliable ranked histograms. CaLDAS has been configured to assimilate L-band microwave brightness temperature TB by coupling the land surface model with a microwave radiative transfer model. A continental-scale synthetic experiment assimilating passive L-band TBs for an entire warm season is performed over North America. Ensemble metric scores are used to quantify the impact of different atmospheric forcing uncertainties on soil moisture and TB ensemble spread. The use of an ensemble of precipitation analyses, generated by assimilating precipitation observations, as forcing combined with the assimilation of L-band TBs gave rise to the largest improvements in superficial soil moisture scores and to a more rapid reduction of the root-zone soil moisture errors. Innovation diagnostics show that the EnKF is able to maintain a sufficient forecast error spread through time, while soil moisture estimation error improvements with increasing ensemble size were limited.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3