Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: grassland case study
-
Published:2011-07-22
Issue:7
Volume:8
Page:1971-1986
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Barbu A. L.,Calvet J.-C.,Mahfouf J.-F.,Albergel C.,Lafont S.
Abstract
Abstract. The performance of the joint assimilation in a land surface model of a Soil Wetness Index (SWI) product provided by an exponential filter together with Leaf Area Index (LAI) is investigated. The data assimilation is evaluated with different setups using the SURFEX modeling platform, for a period of seven years (2001–2007), at the SMOSREX grassland site in southwestern France. The results obtained with a Simplified Extended Kalman Filter demonstrate the effectiveness of a joint data assimilation scheme when both SWI and Leaf Area Index are merged into the ISBA-A-gs land surface model. The assimilation of a retrieved Soil Wetness Index product presents several challenges that are investigated in this study. A significant improvement of around 13 % of the root-zone soil water content is obtained by assimilating dimensionless root-zone SWI data. For comparison, the assimilation of in situ surface soil moisture is considered as well. A lower impact on the root zone is noticed. Under specific conditions, the transfer of the information from the surface to the root zone was found not accurate. Also, our results indicate that the assimilation of in situ LAI data may correct a number of deficiencies in the model, such as low LAI values in the senescence phase by using a seasonal-dependent error definition for background and observations. In order to verify the specification of the errors for SWI and LAI products, a posteriori diagnostics are employed. This approach highlights the importance of the assimilation design on the quality of the analysis. The impact of data assimilation scheme on CO2 fluxes is also quantified by using measurements of net CO2 fluxes gathered at the SMOSREX site from 2005 to 2007. An improvement of about 5 % in terms of rms error is obtained.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference44 articles.
1. Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337. https://doi.org/10.5194/hess-12-1323-2008, 2008. 2. Albergel, C., Calvet, J.-C., Mahfouf, J.-F., Rüdiger, C., Barbu, A. L., Lafont, S., Roujean, J.-L., Walker, J. P., Crapeau, M., and Wigneron, J.-P.: Monitoring of water and carbon fluxes using a land data assimilation system: a case study for southwestern France, Hydrol. Earth Syst. Sci., 14, 1109–1124. https://doi.org/10.5194/hess-14-1109-2010, 2010. 3. Andersson, E.: Modelling of innovation statistics, Pp. 153–164 of Proceedings of Workshop on recent developments in data assimilation for atmosphere and ocean, ECMWF, Reading, UK, 2003. 4. Boone, A., Calvet, J.-C., and Noilhan, J.: Inclusion of a third soil layer in a land surface scheme using the force-restore method, J. Appl. Meteor., 38, 1611–1630, 1999. 5. Brut, A., Rüdiger, C., Lafont, S., Roujean, J.-L., Calvet, J.-C., Jarlan, L., Gibelin, A.-L., Albergel, C., Le Moigne, P., Soussana, J.-F., Klumpp, K., Guyon, D., Wigneron, J.-P., and Ceschia, E.: Modelling LAI at a regional scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern France, Biogeosciences, 6, 1389–1404, https://doi.org/10.5194/bg-6-1389-2009, 2009.
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|